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ABSTRACT 

In this paper we achieve a fixed point theorem for 𝐷∗-metric set-valued restricted-quasi-contraction mappings in a 

𝐷∗-metric space. The result was obtained analogously by the method followed by Aydi [1] and extends the set-valued fixed 

point theory from 𝑏-metric spaces to 𝐷∗-metric spaces. 
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1. INTRODUCTION AND PRELIMINARIES  

The idea of the 𝑏-metric space as a generalization of the notion of an ordinary metric space was defined in 1998 

by Czerwik, his motivation for this new concept was an observation that some mathematical problems lead to a different 

kind of triangle inequality in which the ordinary triangle inequality does not hold see Example 1.1 and [2]. 

The 𝐷-metric space was introduced by B. C. Dhage [3] as an attempt to obtain equivalent metric space results in a 

more general setting. The geometric representation of the 𝐷-metric space can be thought of as the perimeter of a triangle in 

ℝ2 with vertices 𝑥, 𝑦 and 𝑧.  

Unfortunately, many authors such as Mustafa, Sims and Naidu have found flaws with the topological properties of 

the 𝐷-metric space see [4, 5], which lead Sedghi [6] to provide a modification of the 𝐷-metric space known as the          

𝐷∗-metric space. 

Definition 1.1 [2] Let𝑋 be a non-empty set and 𝑠 ≥ 1 be a given real number. A function 𝑑: 𝑋 × 𝑋 ⟶ ℝ, is called 

a 𝑏-metric if for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 the following conditions are satisfied, 

 𝑑 𝑥, 𝑦 ≥ 0 

 𝑑 𝑥, 𝑦 = 0 if and only if 𝑥 = 𝑦 

 𝑑 𝑥, 𝑦 = 𝑑 𝑦, 𝑥  

 𝑑(𝑥, 𝑦) ≤ 𝑠 𝑑 𝑥, 𝑧 + 𝑑 𝑧, 𝑦  . 

The pair  𝑋, 𝑑 is called a 𝑏-metric space. 

It is clear that the (usual) d-metric space is a 𝑏-metric space, however the converse is not true. The following 

example shows that a 𝑏-metric on 𝑋 need not be a metric on 𝑋. 

Example 1.1: Let 𝑋 = {𝑥1 , 𝑥2 , 𝑥3}, 𝑑 𝑥1 , 𝑥3 = 𝑘 ≥ 2, 𝑑 𝑥1 , 𝑥2 = 𝑑 𝑥2, 𝑥3 = 1, 𝑑 𝑥𝑖 , 𝑥𝑗  = 𝑑 𝑥𝑗 , 𝑥𝑖  for 

𝑖, 𝑗 = 1,2,3, 𝑖 ≠ 𝑗 and 𝑑 𝑥𝑖 , 𝑥𝑖 = 0 for 𝑖 = 1,2,3. 
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Then, 𝑑 𝑥𝑖 , 𝑥𝑗  ≤
𝑘

2
 𝑑 𝑥𝑖 , 𝑥𝑚  + 𝑑 𝑥𝑚 , 𝑥𝑗   for 𝑚, 𝑖, 𝑗 = 1,2,3. 

Clearly (𝑋, 𝑑) is a 𝑏-metric space. However for 𝑘 > 2 say𝑘 = 3  

 l𝑑 𝑥1, 𝑥3 = 3,    𝑑 𝑥1 , 𝑥2 = 1,   𝑑 𝑥2 , 𝑥3 = 1 

This implies, 𝑑 𝑥1 , 𝑥3 ≰ 𝑑 𝑥1 , 𝑥2 + 𝑑 𝑥2 , 𝑥3 . Hence the ordinary triangle inequality does not hold. Therefore 

(𝑋, 𝑑) is not a metric space. 

Definition 1.2 [3] Let𝑋 be a non-empty set and let 𝐷: 𝑋 × 𝑋 × 𝑋 ⟶ [0,∞) be a function satisfying the following 

conditions, for all 𝑎, 𝑥, 𝑦, 𝑧 ∈ 𝑋 

 𝐷(𝑥, 𝑦, 𝑧) ≥ 0 

 𝐷 𝑥, 𝑦, 𝑧 = 0 if and only if 𝑥 = 𝑦 = 𝑧 

 𝐷 𝑥, 𝑦, 𝑧 = 𝐷 𝑥, 𝑧, 𝑦 = 𝐷 𝑦, 𝑥, 𝑧 = 𝐷 𝑦, 𝑧, 𝑥 = 𝐷 𝑧, 𝑥, 𝑦 = 𝐷(𝑧, 𝑦, 𝑥) 

 𝐷 𝑥, 𝑦, 𝑧 ≤ 𝐷 𝑥, 𝑦, 𝑎 + 𝐷 𝑥, 𝑎, 𝑧 + 𝐷(𝑎, 𝑦, 𝑧). 

Then 𝐷 is called a 𝐷-metric on 𝑋 and the pair (𝑋, 𝐷) is called 𝐷-metric space. 

In addition, if 𝐷 𝑥, 𝑥, 𝑦 = 𝐷(𝑥, 𝑦, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 then 𝐷 is called a symmetric 𝐷-metric. 

It should be noted that the usual 𝑑-metric is often called the distance function while the 𝐷-metric is called the 

diameter function.  

Definition 1.3 [6] Let𝑋 be a non-empty set and let 𝐷∗: 𝑋 × 𝑋 × 𝑋 ⟶ [0,∞) be a function satisfying the following 

conditions, for all 𝑎, 𝑥, 𝑦, 𝑧 ∈ 𝑋 

 𝐷∗(𝑥, 𝑦, 𝑧) ≥ 0 

 𝐷∗ 𝑥, 𝑦, 𝑧 = 0 if and only if 𝑥 = 𝑦 = 𝑧 

 𝐷∗ 𝑥, 𝑦, 𝑧 = 𝐷∗ 𝑥, 𝑧, 𝑦 = 𝐷∗ 𝑦, 𝑥, 𝑧 = 𝐷∗ 𝑦, 𝑧, 𝑥 = 𝐷∗ 𝑧, 𝑥, 𝑦 = 𝐷∗(𝑧, 𝑦, 𝑥) 

 𝐷∗ 𝑥, 𝑦, 𝑧 ≤ 𝐷∗ 𝑥, 𝑦, 𝑎 + 𝐷∗ 𝑎, 𝑧, 𝑧 . 

Then 𝐷∗ is called a 𝐷∗-metric on 𝑋 and the pair (𝑋, 𝐷∗) is called 𝐷∗-metric space. 

Remark 1.1 [6]Let(𝑋, 𝐷∗) be a 𝐷∗-metric space.  

 Then 𝐷∗ 𝑥, 𝑦, 𝑦 = 𝐷∗(𝑥, 𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋. 

 From (a) we can write condition (iv) of Definition 1.3 as  

 𝐷∗ 𝑥, 𝑦, 𝑧 ≤ a 𝐷∗ 𝑥, 𝑎, 𝑎 + a 𝐷∗(𝑎, 𝑦, 𝑧)for all 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋 

Definition 1.4 [6]A sequence {𝑥𝑛 } in a 𝐷∗-metric space is said to be convergent or 𝐷∗-convergent to 𝑥 ∈ 𝑋 if for 

every 𝜖 > 0, there exist 𝑛0 = 𝑛0(𝜖) ∈ ℕ, such that𝐷∗ 𝑥𝑛 , 𝑥𝑛 , 𝑥 < ∈ for all 𝑛 > 𝑛0. That is, 

 𝐷∗ 𝑥𝑛 , 𝑥𝑛 , 𝑥 ⟶ 0 as 𝑛 ⟶ ∞, or simply lim𝑛→∞ 𝑥𝑛 = 𝑥. 

It is also noted that 𝐷∗ 𝑥𝑛 , 𝑥𝑛 , 𝑥 = 𝐷∗ 𝑥, 𝑥, 𝑥𝑛 for all 𝑛 > 𝑛0. 



Fixed Point Theorem for Set-Valued Restricted-Quasi-Contraction Maps in a 𝑫∗-Metric Space                                                                               69 

Definition 1.5 [6] A sequence {𝑥𝑛 } in a 𝐷∗-metric space is said to be a 𝐷∗-cauchy sequence if for every 𝜖 > 0, 

there exist 𝑛0 = 𝑛0(𝜖) ∈ ℕ, such that𝐷∗ 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑚  < ∈ for all 𝑚, 𝑛 > 𝑛0. 

The space (𝑋, 𝐷∗) is said to be complete if every 𝐷∗-Cauchy sequence in 𝑋 is convergent in 𝑋. 

Definition 1.6 Let (𝑋, 𝑑) be a metric space. The family of all non-empty closed and bounded subsets of 𝑋 is 

denoted by 𝐶𝐵 𝑋 . 

The following definition is identical to the definition given by Ashraf [7] 

Definition 1.7 Let  𝑋, 𝑑  be a metric space, (𝑋, 𝐷) be a 𝐷-metric space and 𝐶𝐵𝐷(𝑋) be the family of all          

non-empty closed and bounded subsets of 𝑋 in a 𝐷-metric space. 

 The distance between any point 𝑥 ∈ 𝑋 and any two non-empty subsets 𝐴, 𝐵 ∈ 𝐶𝐵𝐷(𝑋) is denoted by 𝐷(𝑥, 𝐴, 𝐵) 

and is defined by, 

 𝐷 𝑥, 𝐴, 𝐵 = 𝑑 𝑥, 𝐴 + 𝑑 𝑥, 𝐵 + 𝑑(𝐴, 𝐵) 

Where, 

𝑑 𝑥, 𝐴 = inf⁡{𝑑 𝑥, 𝑦 : 𝑦 ∈ 𝐴},𝑑 𝑥, 𝐵 = inf⁡{𝑑 𝑥, 𝑦 : 𝑦 ∈ 𝐵}and 𝑑 𝐴, 𝐵 = inf 𝑑 𝑎, 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 . 

 Let 𝐴, 𝐵, 𝐶 ∈ 𝐶𝐵𝐷(𝑋). The Hausdorff 𝐷-metric or Hausdorff 𝐷-metric distance is denoted by 𝐷𝐻(𝐴, 𝐵, 𝐶) and is 

defined by, 

 𝐷𝐻 𝐴, 𝐵, 𝐶 = max 𝑠𝑢𝑝𝑥∈𝐴𝐷 𝑥, 𝐵, 𝐶 , 𝑠𝑢𝑝𝑥∈𝐵𝐷 𝑥, 𝐶, 𝐴 , 𝑠𝑢𝑝𝑥∈𝐶𝐷 𝑥, 𝐴, 𝐵  . 

Informally, if (𝑋, 𝐷) is a 𝐷-metric space, the 𝐷-metric Hausdorff distance is the greatest of all distances from a 

point in one set to the closest points in the other two sets plus the distance between those two sets. 

Definition 1.8 [8]Let 𝑋, 𝑑  be a metric space. The set-valued map 𝑇: 𝑋 ⟶ 𝐶𝐵(𝑋) is said to be a 𝑞-set-valued 

quasi-contraction if, 

 𝑑𝐻 𝑇𝑥, 𝑇𝑦 ≤ 𝑞.𝑚𝑎𝑥 𝑑 𝑥, 𝑦 , 𝑑 𝑥, 𝑇𝑥 , 𝑑 𝑦, 𝑇𝑦 , 𝑑 𝑥, 𝑇𝑦 , 𝑑(𝑦, 𝑇𝑥) , for any 𝑥, 𝑦 ∈ 𝑋 where 0 ≤ 𝑞 < 1 and 𝑑𝐻  

denotes the Hausdorff metric on 𝐶𝐵(𝑋) induced by 𝑑. That is,  

𝑑𝐻 𝐴, 𝐵 = 𝑚𝑎𝑥 𝑠𝑢𝑝𝑥∈𝐴𝑑 𝑥, 𝐵 , 𝑠𝑢𝑝𝑦∈𝐵𝑑 𝑦, 𝐴  for all  𝐴, 𝐵 ∈ 𝐶𝐵(𝑋). 

The following is a fixed point theorem for set-valued quasi-contraction maps in 𝑏-metric spaces. 

Theorem 1.1 [1]Let(𝑋, 𝑑) be a complete 𝑏-metric space. Suppose that 𝑇 is a 𝑞-set-valued quasi-contraction. 

Assume that <
1

𝑠2+𝑠
 , then 𝑇 has a fixed point in 𝑋, that is there exist 𝑢 ∈ 𝑋 such that 𝑢 = 𝑇𝑢  𝑢 ∈ 𝑇𝑢 . 

Our main result extends Theorem 1.1 to 𝐷∗-metric spaces. 

MAIN RESULTS 

Before we get into the specifics of the main result, the following definitions are required. It shows the natural 

extension of Definition 1.6 and Definition 1.7 as it applies to the 𝐷∗-metric space. 

Definition 2.1 Let (𝑋, 𝐷∗) be a 𝐷∗-metric space. The family of all non-empty closed and bounded subsets of 𝑋 is 

denoted by 𝐶𝐵𝐷∗ 𝑋 . 
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Definition 2.2 Let  𝑋, 𝑑  be a metric space, (𝑋, 𝐷∗) be a 𝐷∗-metric space and 𝐶𝐵𝐷∗(𝑋) be the family of all      

non-empty closed and bounded subsets of 𝑋 in a 𝐷∗-metric space. 

 The distance between any point 𝑥 ∈ 𝑋 and any two non-empty subsets 𝐴, 𝐵 ∈ 𝐶𝐵𝐷∗(𝑋) is denoted by 𝐷∗(𝑥, 𝐴, 𝐵) 

and is defined by, 

 𝐷∗ 𝑥, 𝐴, 𝐵 = 𝑑 𝑥, 𝐴 + 𝑑 𝑥, 𝐵 + 𝑑 𝐴, 𝐵  

Where,𝑑 𝑥, 𝐴 = inf⁡{𝑑 𝑥, 𝑦 : 𝑦 ∈ 𝐴}, 𝑑 𝑥, 𝐵 = inf⁡{𝑑 𝑥, 𝑦 : 𝑦 ∈ 𝐵} and 𝑑 𝐴, 𝐵 = inf 𝑑 𝑎, 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 . 

 Let 𝐴, 𝐵, 𝐶 ∈ 𝐶𝐵𝐷∗(𝑋). The Hausdorff 𝐷∗-metric or Hausdorff 𝐷∗-metric distance is denoted by 𝐷∗
𝐻(𝐴, 𝐵, 𝐶) and 

is defined by, 

  𝐷∗
𝐻 𝐴, 𝐵, 𝐶 = max 𝑠𝑢𝑝𝑥∈𝐴𝐷

∗ 𝑥, 𝐵, 𝐶 , 𝑠𝑢𝑝𝑥∈𝐵𝐷
∗ 𝑥, 𝐶, 𝐴 , 𝑠𝑢𝑝𝑥∈𝐶𝐷

∗ 𝑥, 𝐴, 𝐵  . 

Informally, if (𝑋, 𝐷∗) is a 𝐷∗-metric space, the 𝐷∗-metric Hausdorff distance is the greatest of all distances from a 

point in one set to the closest points in the other two sets plus the distance between those two sets. 

The following lemma is an immediate consequence of above Definition 2.2. 

Lemma 2.1 Let  𝑋, 𝐷∗  be a 𝐷∗-metric space. Let 𝐴, 𝐵, 𝐶 ∈ 𝐶𝐵𝐷∗ 𝑋 , then for every 𝛼 > 0 and every 𝑎 ∈ 𝐴, there 

exist and 𝑏 ∈ 𝐵 and 𝑐 ∈ 𝐶 such that 

 𝐷∗ 𝑎, 𝑏, 𝑐 ≤ 𝐷∗
𝐻 𝐴, 𝐵, 𝐶 + 𝛼. 

Definition 2.3 Let  𝑋, 𝐷∗  be a 𝐷∗-metric space. The set-valued map 𝑇: 𝑋 ⟶ 𝐶𝐵𝐷∗ 𝑋  is said to be a 𝐷∗-metric  

𝑞-set-valued restricted-quasi-contraction if for any 𝑥, 𝑦, 𝑧 ∈ 𝑋 

𝐷∗
𝐻 𝑇𝑥, 𝑇𝑦, 𝑇𝑧 ≤ 𝑞.𝑚𝑎𝑥 𝐷∗ 𝑥, 𝑦, 𝑧 , 𝐷∗ 𝑦, 𝑇𝑥, 𝑇𝑥 , 𝐷∗ 𝑧, 𝑇𝑥, 𝑇𝑥 , 𝐷∗ 𝑦, 𝑇𝑦, 𝑇𝑧 , 𝐷∗ 𝑧, 𝑇𝑦, 𝑇𝑧   

Where 0 ≤ 𝑞 < 1 and 𝐷∗
𝐻  denotes the Hausdorff metric on 𝐶𝐵𝐷∗(𝑋) induced by𝐷∗, that is, for all            

𝐴, 𝐵, 𝐶 ∈ 𝐶𝐵𝐷∗(𝑋), 

  𝐷∗
𝐻 𝐴, 𝐵, 𝐶 = max⁡ 𝑠𝑢𝑝𝑥∈𝐴𝐷

∗ 𝑥, 𝐵, 𝐶 , 𝑠𝑢𝑝𝑥∈𝐵𝐷
∗ 𝑥, 𝐶, 𝐴 , 𝑠𝑢𝑝𝑥∈𝐶𝐷

∗ 𝑥, 𝐴, 𝐵   

Lemma 2.2 Let  𝑋, 𝐷∗  be a 𝐷∗-metric space and  𝐴 ∈ 𝐶𝐵𝐷∗ 𝑋  and 𝑥 ∈ 𝑋. Then 𝐷∗ 𝑥, 𝐴, 𝐴 = 0  if and only if 

𝑥 ∈ 𝐴 = 𝐴. 

Proof: Suppose𝐷∗ 𝑥, 𝐴, 𝐴 = 0. This implies,  𝑑 𝑥, 𝐴 + 𝑑 𝑥, 𝐴 + 𝑑 𝐴, 𝐴 = 0 

Therefore, 𝑑 𝑥, 𝐴 = 0. That is, inf 𝑑 𝑥, 𝑦 : 𝑦 ∈ 𝐴 = 0. Hence there exist 𝑦 ∈ 𝐴 such that 𝑑 𝑥, 𝑦 = 0, and 

since 𝑑 𝑥, 𝑦 = 0, we have that 𝑥 = 𝑦. Now 𝑦 ∈ 𝐴, implies 𝑥 = 𝑦 ∈ 𝐴. That is 𝑥 ∈ 𝐴. 

Also 𝐴 is closed since 𝐴 ∈ 𝐶𝐵𝐷∗ 𝑋 , which implies that 𝐴 = 𝐴.Hence, 𝑥 ∈ 𝐴 = 𝐴. 

Conversely suppose 𝑥 ∈ 𝐴 = 𝐴, then 𝑥 ∈ 𝐴. This implies, 𝑑 𝑥, 𝐴 = 0.  

Therefore, 𝑑 𝑥, 𝐴 + 𝑑 𝑥, 𝐴 + 𝑑 𝐴, 𝐴 = 0. Hence, 𝐷∗ 𝑥, 𝐴, 𝐴 = 0. 

                    ∎ 

Lemma 2.3 Let (𝑋, 𝐷∗) be a 𝐷∗-metric space and {𝑥𝑛 } be a sequence in 𝑋 such that 

𝐷∗(𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2) ≤ 𝑘𝐷∗(𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1) for𝑛 = 1,2, …where 0 ≤ 𝑘 < 1. 
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Then the sequence {𝑥𝑛 } is a Cauchy sequence in 𝑋. 

Proof: First note that, 

 𝐷∗ 𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2 ≤ 𝑘𝐷∗ 𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+1  

 ≤ 𝑘2𝐷∗ 𝑥𝑛−1, 𝑥𝑛 , 𝑥𝑛 ≤ ⋯ ≤ 𝑘𝑛𝐷∗ 𝑥0 , 𝑥1 , 𝑥1  

Using Definition 1.3 and remark 1.1, for 𝑚 > 𝑛, 

 𝐷∗ 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑚  ≤ 𝐷∗ 𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+1 + 𝐷∗ 𝑥𝑛+1, 𝑥𝑛 , 𝑥𝑚   

 ≤ 𝑘𝑛−1𝐷∗ 𝑥0 , 𝑥1 , 𝑥1 + 𝐷∗ 𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2 + 𝐷∗ 𝑥𝑛+2 , 𝑥𝑛 , 𝑥𝑚   

 ≤ 𝑘𝑛−1𝐷∗ 𝑥0 , 𝑥1 , 𝑥1 + 𝑘𝑛𝐷∗ 𝑥0 , 𝑥1 , 𝑥1 + 𝐷∗ 𝑥𝑛+2, 𝑥𝑛+3, 𝑥𝑛+3 +𝐷
∗ 𝑥𝑛+2 , 𝑥𝑛 , 𝑥𝑚   

 <  𝑘𝑛−1 + 𝑘𝑛 + 𝑘𝑛+1 + ⋯ 𝐷∗ 𝑥0, 𝑥1 , 𝑥1  

=
𝑘𝑛−1

1−𝑘
𝐷∗ 𝑥0, 𝑥1 , 𝑥1 ) ⟶ 0as 𝑛 ⟶ ∞. 

This implies that   𝑥𝑛   is a Cauchy sequence. 

                   ∎ 

The following is our main result, it is a fixed point theorem for 𝐷∗-metric set-valued restricted-quasi-contraction 

maps in a 𝐷∗-metric space. 

Theorem 2.1 Let (𝑋, 𝐷∗) be a complete 𝐷∗-metric space and 𝑇:𝑋⟶ 𝐶𝐵𝐷∗ 𝑋 be a 𝐷∗-metric 𝑞-set-valued                 

restricted-quasi-contraction. If 𝑞 <
1

𝑠2+𝑠
 where  𝑠 ≥ 1 then 𝑇 has a fixed point in 𝑋. That is there exist 𝑢 ∈ 𝑋 such 

that 𝑢 ∈ 𝑇𝑢. 

Proof: Since 𝑇 is a 𝐷∗-metric 𝑞-set valued restricted-quasi-contraction, we have for any 𝑥, 𝑦, 𝑧 ∈ 𝑋, 

 𝐷∗
𝐻 𝑇𝑥, 𝑇𝑦, 𝑇𝑧 ≤ 𝑞.𝑚𝑎𝑥 𝐷∗ 𝑥, 𝑦, 𝑧 , 𝐷∗ 𝑦, 𝑇𝑥, 𝑇𝑥 , 𝐷∗ 𝑧, 𝑇𝑥, 𝑇𝑥 , 𝐷∗ 𝑦, 𝑇𝑦, 𝑇𝑧 , 𝐷∗ 𝑧, 𝑇𝑦, 𝑇𝑧   

Now, 𝑚𝑎𝑥 𝐷∗ 𝑥, 𝑦, 𝑧 , 𝐷∗ 𝑦, 𝑇𝑥, 𝑇𝑥 , 𝐷∗ 𝑧, 𝑇𝑥, 𝑇𝑥 , 𝐷∗ 𝑦, 𝑇𝑦, 𝑇𝑧 , 𝐷∗ 𝑧, 𝑇𝑦, 𝑇𝑧  = 0 if and only if 

𝑥 = 𝑦 = 𝑧 is a fixed point of 𝑇.  

We therefore assume, 

𝑚𝑎𝑥 𝐷∗ 𝑥, 𝑦, 𝑧 , 𝐷∗ 𝑦, 𝑇𝑥, 𝑇𝑥 , 𝐷∗ 𝑧, 𝑇𝑥, 𝑇𝑥 , 𝐷∗ 𝑦, 𝑇𝑦, 𝑇𝑧 , 𝐷∗ 𝑧, 𝑇𝑦, 𝑇𝑧  > 0f or all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

Take 𝛼′ =
1

2
 

1

𝑠2−𝑠
− 𝑞  and 𝛽 = 𝑞 + 𝛼′ =

1

2
 

1

𝑠2−𝑠
+ 𝑞 . 

Since we assumed that  𝑞 <
1

𝑠2+𝑠
 , we have 𝛼′ > 0 and 0 < 𝛽 < 1. 

Let 𝑥0 ∈ 𝑋 and 𝑥1 ∈ 𝑇𝑥0, By Lemma 2.1, there exist 𝑥2 ∈ 𝑇𝑥1 and 𝑥3 ∈ 𝑇𝑥2 such that,  

 𝐷∗ 𝑥1, 𝑥2 , 𝑥3 ≤ 𝐷∗
𝐻 𝑇𝑥0 , 𝑇𝑥1 , 𝑇𝑥2 +  𝛼 

Also by Lemma 2.1, 𝐷∗ 𝑥1, 𝑥2 , 𝑥2 ≤ 𝐷∗
𝐻 𝑇𝑥0 , 𝑇𝑥1 , 𝑇𝑥1 +  𝛼1where 𝛼1 > 0. 
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For 𝛼1 = 𝛼′𝑚𝑎𝑥  
𝐷∗ 𝑥0 , 𝑥1 , 𝑥1 , 𝐷

∗ 𝑥1 , 𝑇𝑥0 , 𝑇𝑥0 , 𝐷
∗ 𝑥1, 𝑇𝑥0 , 𝑇𝑥0 ,

𝐷∗ 𝑥1 , 𝑇𝑥1 , 𝑇𝑥1 , 𝐷
∗ 𝑥1 , 𝑇𝑥1 , 𝑇𝑥1 

   we have, 

 𝐷∗ 𝑥1, 𝑥2 , 𝑥2 ≤ 𝐷∗
𝐻 𝑇𝑥0 , 𝑇𝑥1 , 𝑇𝑥1 +  𝛼′𝑚𝑎𝑥  

𝐷∗ 𝑥0, 𝑥1 , 𝑥1 , 𝐷
∗ 𝑥1, 𝑇𝑥0 , 𝑇𝑥0 , 𝐷

∗ 𝑥1, 𝑇𝑥0 , 𝑇𝑥0 ,

𝐷∗ 𝑥1, 𝑇𝑥1 , 𝑇𝑥1 , 𝐷
∗ 𝑥1, 𝑇𝑥1 , 𝑇𝑥1 

  

 ≤ 𝑞.𝑚𝑎𝑥  
𝐷∗ 𝑥0, 𝑥1 , 𝑥1 , 𝐷

∗ 𝑥1, 𝑇𝑥0 , 𝑇𝑥0 , 𝐷
∗ 𝑥1, 𝑇𝑥0 , 𝑇𝑥0 ,

𝐷∗ 𝑥1, 𝑇𝑥1 , 𝑇𝑥1 , 𝐷
∗ 𝑥1, 𝑇𝑥1 , 𝑇𝑥1 

  

  𝛼′ .𝑚𝑎𝑥  
𝐷∗ 𝑥0, 𝑥1 , 𝑥1 , 𝐷

∗ 𝑥1, 𝑇𝑥0 , 𝑇𝑥0 , 𝐷
∗ 𝑥1, 𝑇𝑥0 , 𝑇𝑥0 ,

𝐷∗ 𝑥1, 𝑇𝑥1 , 𝑇𝑥1 , 𝐷
∗ 𝑥1, 𝑇𝑥1 , 𝑇𝑥1 

  

 = 𝛽.𝑚𝑎𝑥  
𝐷∗ 𝑥0 , 𝑥1 , 𝑥1 , 𝐷

∗ 𝑥1, 𝑇𝑥0 , 𝑇𝑥0 , 𝐷
∗ 𝑥1, 𝑇𝑥0 , 𝑇𝑥0 ,

𝐷∗ 𝑥1, 𝑇𝑥1 , 𝑇𝑥1 , 𝐷
∗ 𝑥1, 𝑇𝑥1 , 𝑇𝑥1 

  

Thus by induction, there exist a sequence  𝑥𝑛  in 𝑋 such that 𝑥𝑛+1 ∈ 𝑇𝑥𝑛  and for all 𝑛 ∈ ℕ,, 

 𝐷∗ 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 ≤ 𝐷∗
𝐻 𝑇𝑥𝑛−1 , 𝑇𝑥𝑛 , 𝑇𝑥𝑛 +  𝛼′𝑚𝑎𝑥  

𝐷∗ 𝑥𝑛−1 , 𝑥𝑛 , 𝑥𝑛 , 𝐷
∗ 𝑥𝑛 , 𝑇𝑥𝑛−1 , 𝑇𝑥𝑛−1 ,

𝐷∗ 𝑥𝑛 , 𝑇𝑥𝑛−1 , 𝑇𝑥𝑛−1 , 𝐷
∗ 𝑥𝑛 , 𝑇𝑥𝑛 , 𝑇𝑥𝑛 

𝐷∗ 𝑥𝑛 , 𝑇𝑥𝑛 , 𝑇𝑥𝑛 
  

 ≤ 𝛽.𝑚𝑎𝑥  

𝐷∗ 𝑥𝑛−1 , 𝑥𝑛 , 𝑥𝑛 , 𝐷
∗ 𝑥𝑛 , 𝑇𝑥𝑛−1, 𝑇𝑥𝑛−1 ,

𝐷∗ 𝑥𝑛 , 𝑇𝑥𝑛−1 , 𝑇𝑥𝑛−1 , 𝐷
∗ 𝑥𝑛 , 𝑇𝑥𝑛 , 𝑇𝑥𝑛 

𝐷∗ 𝑥𝑛 , 𝑇𝑥𝑛 , 𝑇𝑥𝑛 
  

 Let𝐷𝑛
∗ = 𝐷∗(𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+1), we then have 

𝐷𝑛
∗ ≤ 𝛽.𝑚𝑎𝑥  

𝐷∗ 𝑥𝑛−1 , 𝑥𝑛 , 𝑥𝑛 , 𝐷
∗ 𝑥𝑛 , 𝑇𝑥𝑛−1 , 𝑇𝑥𝑛−1 ,

𝐷∗ 𝑥𝑛 , 𝑇𝑥𝑛−1, 𝑇𝑥𝑛−1 , 𝐷
∗ 𝑥𝑛 , 𝑇𝑥𝑛 , 𝑇𝑥𝑛 

𝐷∗ 𝑥𝑛 , 𝑇𝑥𝑛 , 𝑇𝑥𝑛 
                                                                                                (2.1) 

Case I: If 𝑥𝑛 = 𝑥𝑛+1 then 𝑥𝑛 = 𝑥𝑛+1 ∈ 𝑇𝑥𝑛  is a fixed point of 𝑇 and the proof will be complete. 

Case II: If 𝑥𝑛 ≠ 𝑥𝑛+1. Then, 

 𝑚𝑎𝑥  

𝐷∗ 𝑥𝑛−1 , 𝑥𝑛 , 𝑥𝑛 , 𝐷
∗ 𝑥𝑛 , 𝑇𝑥𝑛−1 , 𝑇𝑥𝑛−1 ,

𝐷∗ 𝑥𝑛 , 𝑇𝑥𝑛−1 , 𝑇𝑥𝑛−1 , 𝐷
∗ 𝑥𝑛 , 𝑇𝑥𝑛 , 𝑇𝑥𝑛 

𝐷∗ 𝑥𝑛 , 𝑇𝑥𝑛 , 𝑇𝑥𝑛 
 ≤ 𝑚𝑎𝑥  

𝐷∗ 𝑥𝑛−1 , 𝑥𝑛 , 𝑥𝑛 , 𝐷
∗ 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛 ,

𝐷∗ 𝑥𝑛 , 𝑇𝑥𝑛 , 𝑇𝑥𝑛 , 𝐷
∗ 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 

𝐷∗ 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 
  

 =  𝑚𝑎𝑥 𝐷∗ 𝑥𝑛−1, 𝑥𝑛 , 𝑥𝑛 , 𝐷
∗ 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1  . 

 = 𝑚𝑎𝑥 𝐷𝑛−1
∗ , 𝐷𝑛

∗ . 

If 𝑚𝑎𝑥 𝐷𝑛−1
∗ , 𝐷𝑛

∗ = 𝐷𝑛
∗  , then Equation 2.1 becomes 𝐷𝑛

∗ ≤ 𝛽𝐷𝑛
∗  which contradicts the fact that 0 < 𝛽 < 1. We 

therefore conclude that 𝑚𝑎𝑥 𝐷𝑛−1
∗ , 𝐷𝑛

∗ ≠ 𝐷𝑛
∗  which implies, 

 𝑚𝑎𝑥 𝐷𝑛−1
∗ , 𝐷𝑛

∗ = 𝐷𝑛−1
∗  

Hence Equation 2.1 becomes, 

𝐷𝑛
∗ ≤ 𝛽𝐷𝑛−1

∗                                                                                                                                                    (2.2) 

This implies that the conditions of Lemma 2.3 are satisfied, hence  𝑥𝑛  is a Cauchy sequence. 

Now since 𝑋 is complete, there exist 𝑢 ∈ 𝑋 such that 𝑥𝑛 ⟶ 𝑢 as 𝑛 ⟶ ∞, that is, 
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 lim𝑛→∞ 𝑥𝑛 = 0 

We now proceed to show that 𝑢 is a fixed point of 𝑇, that is 𝑢 ∈ 𝑇𝑢. 

Now by Definition 1.3 we have, 

 𝐷∗ 𝑇𝑢, 𝑇𝑢, 𝑢 ≤ 𝐷∗ 𝑇𝑢, 𝑇𝑢, 𝑥𝑛+1 + 𝐷∗(𝑥𝑛+1 , 𝑢, 𝑢) 

≤ 𝐷∗
𝐻 𝑇𝑢, 𝑇𝑢, 𝑇𝑥𝑛 +  𝛼′ .𝑚𝑎𝑥  

𝐷∗ 𝑢, 𝑢, 𝑥𝑛 , 𝐷
∗ 𝑢, 𝑇𝑢, 𝑇𝑢 ,

𝐷∗ 𝑥𝑛 , 𝑇𝑢, 𝑇𝑢 ,𝐷∗ 𝑢, 𝑇𝑢, 𝑇𝑥𝑛 

𝐷∗ 𝑥𝑛 , 𝑇𝑢, 𝑇𝑥𝑛 
 +  𝐷∗(𝑥𝑛+1 , 𝑢, 𝑢) 

 ≤ 𝑞.𝑚𝑎𝑥  

𝐷∗ 𝑢, 𝑢, 𝑥𝑛 , 𝐷
∗ 𝑢, 𝑇𝑢, 𝑇𝑢 ,

𝐷∗ 𝑥𝑛 , 𝑇𝑢, 𝑇𝑢 , 𝐷∗ 𝑢, 𝑇𝑢, 𝑇𝑥𝑛 

𝐷∗ 𝑥𝑛 , 𝑇𝑢, 𝑇𝑥𝑛 
 +  𝛼′ .𝑚𝑎𝑥  

𝐷∗ 𝑢, 𝑢, 𝑥𝑛 , 𝐷
∗ 𝑢, 𝑇𝑢, 𝑇𝑢 ,

𝐷∗ 𝑥𝑛 , 𝑇𝑢, 𝑇𝑢 , 𝐷∗ 𝑢, 𝑇𝑢, 𝑇𝑥𝑛 

𝐷∗ 𝑥𝑛 , 𝑇𝑢, 𝑇𝑥𝑛 
  

 + 𝐷∗(𝑥𝑛+1 , 𝑢, 𝑢) 

Letting 𝑛 ⟶ ∞ we get,  

𝐷∗ 𝑇𝑢, 𝑇𝑢, 𝑢 ≤ 𝑞. 𝐷∗ 𝑢, 𝑇𝑢, 𝑇𝑢 + 𝛼′𝐷∗ 𝑢, 𝑇𝑢, 𝑇𝑢 =  𝑞 + 𝛼′ 𝐷∗ 𝑢, 𝑇𝑢, 𝑇𝑢 = 𝛽.𝐷∗ 𝑢, 𝑇𝑢, 𝑇𝑢 That 

is, 

𝐷∗ 𝑢, 𝑇𝑢, 𝑇𝑢 ≤ 𝛽.𝐷∗ 𝑢, 𝑇𝑢, 𝑇𝑢                                                                                               (2.3) 

Nowsince 0 < 𝛽 < 1, The only way Equation 2.3 holds is if𝐷∗ 𝑢, 𝑇𝑢, 𝑇𝑢 = 0. 

By lemma 2.2 we get 𝑢 ∈ 𝑇𝑢 = 𝑇𝑢, that is 𝑢 ∈ 𝑇𝑢.  

This completes the proof. 

                   ∎ 
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